
SMART CONTRACT AUDIT

Sep 3rd, 2021 | v.	1.0

99
Score

PASS
Zokyo’s Security Team has
concluded that this smart
contract passes security
qualifications to be listed on
digital asset exchanges

This document outlines the overall security of the DomFi smart contracts, evaluated by
Zokyo's Blockchain Security team.

Technical Summary

The scope of this audit was to analyze and document the DomFi smart contract codebase for
quality, security, and correctness.

. . .

1

DomFi Contract Audit

There were no critical issues found during the audit.

Contract Status

LOW Risk

Testable Code

The testable code is 100%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that's able to withstand the Ethereum network's fast-paced and
rapidly changing environment, we at Zokyo recommend that the DomFi team put in place a
bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD

Table of Contents

. . .

2

DomFi Contract Audit

3Auditing Strategy and Techniques Applied

5Summary

6Structure and Organization of Document

7Complete Analysis

12Code Coverage and Test Results for all files

12Tests written by Zokyo Secured team

3

DomFi Contract Audit

Auditing Strategy and Techniques Applied

The Smart contract's source code was taken from the DomFi repository.

. . .

Repository (archive hash):
5038bf3c0aeeced27ecfd4a8738f4d8bb7ee8747

Last commit (archive hash):
c52a27acb7b33293b6e6834c2f4c69eaf9fd82b4

Contracts:

Staking.sol (Constants.sol, Errors.sol, Modifiers.sol)
DominationToken.sol
Vester.sol

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

4

DomFi Contract Audit

. . .

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of DomFi smart contracts. To do so, the code is reviewed line-by-line by
our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Summary

. . .

5

DomFi Contract Audit

There were neither critical issues nor issues with the high severity found during the audit. All
the mentioned findings may have an effect only in case of specific conditions. They are
described in detail in the “Complete Analysis” section.

The contracts are in excellent condition. They are well written and structured.

All the issues we found were successfully resolved by DomFi team. Hence, the findings bear
no impact on contract performance or security, so the contracts are fully production-ready.

Structure and Organization of Document

. . .

6

DomFi Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Complete Analysis

. . .

7

DomFi Contract Audit

Pragma is not locked to specific version

LOW

Since not all the EVM compiler versions support all the features, especially the latest one’s
which are kind of beta versions, So the intended behavior written in code might not be
executed as expected. Locking the pragma helps ensure that contracts do not accidentally get
deployed using, for example, the latest compiler which may have higher risks of undiscovered
bugs.

Recommendation:
Replace pragma solidity ^0.8.0 with pragma solidity 0.8.5 at FixedPoint.sol,
DominationToken.sol, Vester.sol (or you can change solidity version for all contracts to 0.8.4 to
fix issue with incorrect warnings during analysis “Unreachable code”).

Anyone can initialize contract at Staking.sol

MEDIUM

Function initialize() can be called by anyone and if it fit all requires can set unexpected staking
start timestamp.

Recommendation:
Use modifier onlyOwner to restrict function use to the owner.

. . .

8

DomFi Contract Audit

Improper Handling of ERC20 Transfers at Vester.sol and
Staking.sol

LOW

The linked statements invoke the transfer method without validating the expected return bool
variable.

Vester.sol:

AccessControl(DomToken).grantRole(TRANSFER_ROLE, address(vester));

IERC20(DomToken).transfer(address(vester), vestingAmount);

function claim() public {

 require(block.timestamp >= vestingCliff, 'Vester::claim: not time yet');

 require(block.timestamp >= lastUpdate + timeout || lastUpdate == vestingBegin, 'Vester::claim:
cooldown');

 uint amount;

 if (block.timestamp >= vestingEnd) {

 amount = dom.balanceOf(address(this));

 } else {

 amount = vestingAmount * (block.timestamp - lastUpdate) / (vestingEnd - vestingBegin);

 lastUpdate = block.timestamp;

 }

 dom.transfer(recipient, amount);

}

Vester.sol:

if (partialRewards > 0) {

 DOM_TOKEN.transfer(user, partialRewards);

}

Recommendation:
Use a wrapper library such as SafeERC20.sol by OpenZeppelin to opportunistically evaluate
the returned bool of EIP-20 transfer invocations.

. . .

9

DomFi Contract Audit

Additional check is required at Staking.sol

LOW

In function stakeFor() there is no verification for the zero address for the beneficiary address.

Recommendation:
Add check for the zero address for beneficiary to internal function _stakeFor().

Gas optimization

LOW

In constructor at Staking.sol you use several requires which in final result must meet one
condition.

Recommendation:
You can optimize code as shown below:

if (owner != _msgSender()) {

 transferOwnership(owner);

 }

require(totalDOM > 0, ERROR_ZERO_AMOUNT);

require(stakingStart > block.timestamp, ERROR_PAST_TIMESTAMP);

require(

 lspExpiration - STAKING_START_TIMESTAMP > REWARD_PERIOD,

 ERROR_EXPIRES_TOO_SOON

);

TOTAL_DOM = totalDOM;

STAKING_START_TIMESTAMP = stakingStart;

LSP_EXPIRATION = lspExpiration;

LP_TOKEN = IERC20(lpToken);

DOM_TOKEN = IERC20(domToken);

. . .

10

DomFi Contract Audit

SPDX license identifier not provided in source file Vester.sol

Informational

Recommendation:
Add SPDX license identifier.

. . .

11

DomFi Contract Audit

Re-entrancy

Unexpected Ether

Arithmetic Over/Under Flows

Access Management Hierarchy

Delegatecall

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

General Denial Of Service (DOS)

Signatures Replay

Tx.Origin Authentication

Floating Points and Precision

Uninitialized Storage Pointers

Pool Asset Security (backdoors in the 
underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Staking

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Vester

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

DominationToken

. . .

12

DomFi Contract Audit

Code Coverage and Test Results for all files

Tests written by Zokyo Security team

As part of our work assisting DomFi in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Truffle testing framework.

Tests were based on the functionality of the code, as well as a review of the DomFi contract
requirements for details about issuance amounts and how the system handles these.

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

Code Coverage

FILE

contracts\

DominatonToken.sol

UNCOVERED LINES

Vester.sol

contracts\staking\core

Staking.sol

contracts\staking\utils

100.00

100.00

% STMTS

100.00

100.00

100.00

100.00

95.45

100.00

% BRANCH

94.44

100.00

100.00

100.00

100.00

100.00

% FUNCS

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

Constants.sol

Errors.sol

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

Modifiers.sol 100.00 100.00 100.00 100.00

% LINES

All files 100.00 98.33 100.00 100.00

. . .

13

DomFi Contract Audit

Test Results

Contract: DominationToken

✓ should initialize name of domination token correctly
✓ should initialize symbol of domination token correctly
✓ should initialize default operators of domination token correctly

✓ should set transfers allowed correctly
✓ shouldn't set transfers allowed if msg.sender hasn't role of TRANSFER_TOGGLER

Contract: Staking

✓ should initialize lpToken correctly
✓ should initialize domToken correctly
✓ should initialize start of staking correctly
✓ should initialize maximum DOM to be distributed correctly
✓ shouldn't initialize maximum DOM if maximum DOM isn't more then zero
✓ shouldn't initialize start of staking if start less then timestamp
✓ shouldn't initialize end vesting correctly if cliff more then end

✓ should stake correctly
✓ shouldn't stake if amount is zero
✓ shouldn't stake if isn't allowance from token
✓ shouldn't stake if staking isn't allowed
✓ should stakeFor correctly
✓ shouldn't stakeFor if address is zero
✓ should unstake correctly
✓ shouldn't unstake if amount is zero
✓ shouldn't unstake if amount of unstake more then stake
✓ should view info about stake correctly
✓ should view info about rewards correctly
✓ should unstake without rewards correctly
✓ should get balance of contract correctly
✓ shouldn't unstake if timestamp more then reward's period
✓ should get details about accounts if totalStaked is zero
✓ should withdraw leftover correctly

. . .

14

DomFi Contract Audit

Contract: Vester

✓ should initialize address of token for disburse correctly
✓ should initialize address of recipient correctly
✓ should initialize amount for disburse correctly
✓ should initialize start vesting correctly
✓ should initialize cliff vesting correctly
✓ should initialize end vesting correctly
✓ should initialize time between withdrawals correctly
✓ shouldn't initialize start vesting correctly if start less then timestamp
✓ shouldn't initialize cliff vesting correctly if start more then cliff
✓ shouldn't initialize end vesting correctly if cliff more then end

✓ should set recipient correctly
✓ shouldn't set recipient if recipient is caller
✓ shouldn't set recipient if address is zero
✓ should claim correctly
✓ should claim if vestingEnd less then timestamp
✓ shouldn't claim if no role is assigned
✓ shouldn't claim if cliff more then timestamp
✓ shouldn't claim if lastUpdate not equal to start of staking

Contract: VesterFactory

✓ should add address of recipient correctly
✓ should add start vesting correctly
✓ should add cliff vesting correctly
✓ should add end vesting correctly
✓ should add time between withdrawals correctly

51 passing (5m)

We are grateful to have been given the opportunity to work
with the DomFi team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the DomFi team put
in place a bug bounty program to encourage further analysis
of the smart contract by third parties.

